Meramal Produksi Padi Nasional: Pendekatan Moving Average dan Triple Exponential Smoothing

Authors

  • Hakiki Latifa Aisya Program Studi Matematika, Universitas Mataram
  • Baiq Nurul Apriliana Program Studi Matematika, Universitas Mataram
  • Helmina Andriani Program Studi Statistika, Universitas Mataram

DOI:

https://doi.org/10.29303/ijasds.v2i2.8494

Keywords:

Forecasting, Moving Average, Rice Production, Triple Exponential Smoothing

Abstract

National rice production is a crucial indicator for maintaining food security in Indonesia. Seasonal fluctuations and annual trends in rice production require accurate forecasting methods to support strategic decision-making. This study aims to compare the forecasting accuracy of national rice production using the Moving Average and Triple Exponential Smoothing methods. Monthly rice production data from the 2020–2024 period were used as the basis of analysis. The forecasting results show that the Moving Average method tends to respond slowly to changes in actual production values, while the Triple Exponential Smoothing method is more responsive in capturing seasonal patterns and trends. Accuracy measurements indicate that Moving Average produced MAPE of 41.39%, MAD of 1,828,830 tons, and MSE of 6.24 , while the Triple Exponential Smoothing method provided better results with MAPE of 18.05%, MAD of 814,216 tons, and MSE of 1.13 . Based on these findings, the Triple Exponential Smoothing method is recommended as a more suitable and effective forecasting technique for national rice production data characterized by seasonal patterns.

References

Badan Pusat Statistik. (2025). Luas Panen dan Produksi Padi di Indonesia Tahun 2024. BPS RI.

Ersita, V,. Wilandari, Y,. & Sugito, S. (2024). Metode Triple Exponential Smoothing Holt-Winter’s Multiplicative dan Dekomposisi Klasik Multiplikatif untuk Peramalan Rata-Rata Kenaikan Konsentrasi Karbon Dioksida (CO2) Global. Jurnal Gaussian, 12(3), hlm. 434-444.

Fauzan, M. S,, & Santoso, E. (2024), Penerapan Metode Moving Average dan Exponential Smoothing pada Peramalan Indeks Pembangunan Manusia di Provinsi Papua Pegunungan. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 8(6), hlm 1-10.

Kementerian Pertanian Republik Indonesia. (2023). Laporan Kinerja Produksi Tanaman Pangan Indonesia. Kementan RI

Maricar, M. A. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. Jurnal Sistem dan Informatika (JSI), 13(2), hlm. 36-45.

Nugroho, T., Lestari, D., dan Ramadhan, M. (2022). Dampak Perubahan Iklim terhadap Produksi Padi di Indonesia: Analisis Risiko dan Strategi Adaptasi. Jurnal Ketahanan Pangan, 9(1), hlm. 15-28.

Rachman, R. (2018). Penerapan Metode Moving Average dan Exponential Smoothing pada Peramalan Produksi Industri Garment. Jurnal Informatika, 5(2), hlm. 211-220.

Raharusun, O. S. H. dan Hasibuan, A. (2024). Sistem Prediksi Produksi Beras menggunakan Multiple Linear Regression untuk Optimalisasi Ketahanan Pangan di Kabupaten Minahasa. JOINTER: Journal of Informatics Engineering. 5(02), hlm. 36-40.

Vimala, J. dan Nugroho, A. (2022). Forecasting Penjualan Obat menggunakan Metode Single, Double, dan Triple Exponential Smoothing (Studi Kasus: Apotek Mandiri Medika). IT-Explore: Jurnal Penerapan Teknologi Informasi dan Komunikasi, 1(2), hlm. 90-99.

Wijaya, D. Y., Furqon, M. T., dan Marji, M. (2022). Peramalan Jumlah Produksi Padi menggunakan Metode Backpropagation. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(3), hlm. 1129-1137.

Yolanda, R., Rahmi, D., Kurniati, A., dan Yuniati, S. (2024). Penerapan Metode Triple Exponential Smoothing dalam Peramalan Produksi Buah Nenas di Provinsi Riau. Jurnal Teknologi dan Manajemen Industri Terapan, 3(I), hlm. 1-10.

Published

2025-12-12

Issue

Section

Articles

How to Cite

Meramal Produksi Padi Nasional: Pendekatan Moving Average dan Triple Exponential Smoothing. (2025). Indonesian Journal of Applied Statistics and Data Science, 2(2), 92-103. https://doi.org/10.29303/ijasds.v2i2.8494