Perbandingan Regresi Ridge dan Partial Least Square Dalam Mengatasi Multikolinearitas Pada Faktor-faktor Yang Mempengaruhi Kemiskinan di Nusa Tenggara Barat
DOI:
https://doi.org/10.29303/ijasds.v2i2.8051Keywords:
Poverty, Multicollinearity, Ridge Regression, Partial Least SquareAbstract
Poverty is one of the most serious problems and must be addressed immediately. One of the steps to overcome poverty is to identify the factors that influence it. One of the statistical techniques used to examine the relationship between predictor variables and the response variable is regression analysis. An important assumption that must be met in regression analysis is the absence of multicollinearity. Multicollinearity refers to a condition where two or more predictor variables are highly correlated, which can reduce the accuracy of the regression model. Therefore, addressing multicollinearity is essential to obtain a reliable and valid model. Inthis study, two methods were employed Ridge regression and Partial Least Square (PLS) with the aim of overcoming the multicollinearity problem. The R2adj value was used as a comparison criterion to evaluate model performance. Both methods were applied to poverty-related data that exhibited signs of multicollinearity. The R2adj value obtained from the ridge regression model was 68.57%, while the PLS model yielded a higher R2adj value of 75.1% . Based on this comparison, it can be concluded that the PLS model produced more optimal results than ridge regression in addressing multicollinearity in the context of modeling factors that influence poverty levels in West Nusa Tenggara Province.
References
Annisa, H., Pradita, N. F., & Sukmawaty, Y. (2020). Analisis Kasus Kemiskinan di Provinsi Kalimantan Tengah dengan Pendekatan Principal Component Analysis. Jurnal Al-Qardh, 5(2), 134-141.
Astuti, A. D. (2014). Partial Least Square (PLS) dan Principal Component Regression (PCR) untuk Regresi Linear dengan Multikolineartas pada Kasus Indeks Pembangunan Manusia di Gunung Kidul. Skripsi. Universitas Negeri Yogyakarta.
Bastien, P., Vinzi, V., & Tenenhaus, M. (2004). Partial Least Square Generalized Linear Regression. Computational Statistics & Data Analysis 48, 17-46.
Basuki, T., & Prawoto. (2016). Analisis Regresi dalam Penelitian Ekonomi dan Bisnis: Dilengkapi Aplikasi SPSS dan Eviews. Jakarta: PT Raja Grafindo Persada.
Draper, N.R. dan Smith, H. (2014). Applied Regression Analysis,pp. 1–716.
Ghozali, I., (2008). Aplikasi Analisis Multivariate dengan Program IBM SPSS 23 (Edisi Kedelapan). Semarang: Universitas Diponegoro.
Hoerl, A. E., dan Kennard, R. W., (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.
Montgomery, D. C., Peck, E. A., dan Vining, G. G., (2012). Introduction to Linear Regression Analysis (Fifth Edition). Wiley.
Nurhasanah, Subianto, M., dan Fitriani, R., (2012). Perbandingan metode Partial Least Square (PLS) dengan regresi komponen utama untuk mengatasi multikolinearitas. Statistika 12.1.
Younker, J., (2012). Ridge Estimation and its Modifications for Linear Regression for Linear Regression with Deterministic or Stochastic Predictors. Canada: University of Ottawa.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Baiq Desi Nurma Sari, Lisa Harsyiah, Zulhan Widya Baskara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
