Forecasting the Number of Domestic Passenger Arrivals at APT Pranoto Samarinda Airport Using Maximal Overlap Discrete Wavelet Transform with Multiresolution Autoregressive Model

Authors

  • Thifan Octavianto Program Studi Statistika, Universitas Mulawarman, Indonesia
  • Meiliyani Siringoringo Program Studi Statistika, Universitas Mulawarman, Indonesia
  • Ika Purnamasari Program Studi Statistika, Universitas Mulawarman, Indonesia

DOI:

https://doi.org/10.29303/ijasds.v2i1.5796

Keywords:

Daubechies, MAR, MODWT, Passengers, Wavelet

Abstract

The problem of forecasting domestic passenger arrivals has become increasingly important due to frequent fluctuations and seasonal patterns, as observed at APT Pranoto Airport in Samarinda. Such data requires an approach capable of capturing both long-term trends and rapid changes. This study employs the Maximal Overlap Discrete Wavelet Transform (MODWT), a modified version of the Discrete Wavelet Transform (DWT), which can be applied to data of any size. MODWT decomposes the data into wavelet coefficients and scaling coefficients, which are then used to construct a Multiresolution Autoregressive (MAR) model at each level of Daubechies wavelets. This method is used as a preprocessing step to improve forecasting accuracy. The best model is selected based on the smallest Mean Absolute Percentage Error (MAPE). The analysis results show that the best forecasting model is the one using Daubechies 6 wavelets, with an in-sample MAPE of 13.758% and an out-of-sample MAPE of 9.525%. The forecast of domestic passenger arrivals at APT Pranoto Airport for the period from October 2024 to December 2024 follows a trending pattern.

References

Afsari, K., Siregar, M. A., & Aprilia, R. (2024). Prediksi Inflasi Sumatera Utara dengan Maximal Overlap Discrete Wavelet Transform. Jurnal Sains dan Teknologi, 7(1), 38-47.

Andriyani, M., & Subanar. (2019). Peramalan Data Penumpang Kereta Api Januari 2013-November 2018 Dengan Menggunakan Maximal Overlap Discrete Wavelet Transform-Recurrent Neural Network (MODWT-RNN). Media Statistika, 12(2), 164-174.

Angreni, P., & Juliza, M. (2023). Comparison of Methods ARIMA and MAR Models with MODWT Decomposition on Non-Stationary Data. INSOLOGI, 2(2), 392-399.

Anugrah, M. R., Purnamasari, I., & A'yun, Q. Q. (2024). Transformasi Wavelet Diskrit Daubechies Fungsi Soft Thresholding untuk Prediksi Data Inflasi di Indonesia. Journal of Statistics and Its Application on Teaching and Research, 6(2), 56-66.

Budianti, L., Janatin, Avicenna, M. Y., Putri, A. K., & Darmawan, G. (2024). Pemodelan SARIMA dengan Pendekatan ARCH/GARCH untuk Meramalkan Penjualan Ritel Barang Elektronik. INNOVATIVE: Journal of Social Science Research, 4(1), 1037-1051.

Caraka, R. E., Yasin, H., & Suparti. (2015). Pemodelan Tinggi Pasang Air Laut Di Kota Semarang Dengan Menggunakan Maximal Overlap Disrete Wavelet Transform (MODWT). Jurnal Meteorologi Klimatologi dan Geofisika, 2(2), 104-114.

Cryer, J. (2008). Time Series Analysis. Boston: University of IOWA, PWS KENT Publishing Company.

Conejo, A. J., Plazas, M., Espinol, R., & Molina, A. (2005). Day-Ahead Electricity Price Forecast Using The Wavelet Transform and ARIMA Models. IEEE Transactionsi on Power System, 20(2), 1035-1042.

Darnius, O., & Tarigan, G. (2018). Simulation Method Of Model Selection Based On Mallows' Cp Criteria In Linier Regression. Journal of Physics: Conference Series, 1116(2), 022008.

Daubechies, I. (1992). Ten Lecture on wavelet Society for Industrial and Applued Mathematics. Philadelphia: SIAM.

Juliza, M., Sa'adah, U., & Fernandes, A. A. (2019). Multiscale Autoregressive (MAR) Models with MODWT Decomposition on Non-Stationary Data. IOP Conference Series: Materials Science and Engineering, 546(5), 052035

Maricar, M. A. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. Jurnal Sistem dan Informatika, 13(2), 36-45.

Thode, H. C. (2002). Testing for Normality. New York: Marcel Dekker.

Wahyuningrum, S., Suparti, & Mukid, M. A. (2014). Analisis Pajak Kendaraan bermotor Menggunakan Model Multiscale Autoregressive Dengan Maximal Overlap Discrete Wavelet

Wei, W. W. (1994). Time Series Analysis: Univariate and Multivariate Mehods. United State of America: Addison Wesley Publishing Company Inc.

Widosari, G. (2012). Peramalan Curah Hujan Dengan Wavelet. Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY (pp. 61-68). Yogyakarta: Jurusan Pendidikan Matematika FMIPA UNY.

Zheng, F., & Zhong, S. (2011). Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based on Binomial Smoothing. World Academy of Science, 5(3), 1471-1475.

Published

2025-06-11

How to Cite

Octavianto, T., Siringoringo, M., & Purnamasari, I. (2025). Forecasting the Number of Domestic Passenger Arrivals at APT Pranoto Samarinda Airport Using Maximal Overlap Discrete Wavelet Transform with Multiresolution Autoregressive Model. Indonesian Journal of Applied Statistics and Data Science, 2(1), 44–58. https://doi.org/10.29303/ijasds.v2i1.5796

Issue

Section

Articles