Perbandingan Regresi Nonparametrik Kernel dan Spline pada Pemodelan Hubungan antara Rata-Rata Lama Sekolah dan Pengeluaran per Kapita di Indonesia
Keywords:
Poverty, Kernel Regression, Spline RegressionAbstract
Poverty remains a major issue in developing countries, including Indonesia. In 2021, Indonesia’s poverty rate reached 10.14%, or approximately 27.5 million people (BPS). Poverty alleviation is a primary goal within the Sustainable Development Goals (SDGs). Two important indicators for measuring poverty are per capita expenditure and average years of schooling, which can aid in formulating policies to reduce poverty. This study analyzes the relationship between average years of schooling and per capita expenditure in 2023 using nonparametric regression methods, specifically kernel and spline regression. The kernel regression analysis yielded an optimal bandwidth of 0.860 and a minimum GCV of 0.574. However, the truncated spline method, with one optimal knot, a minimum GCV of 0.5263514 at the 3rd order, and the smallest MSE of 0.4097892, proved to be more accurate in describing the relationship between the two variables. The study concludes that the truncated spline method is superior in modeling the relationship between per capita expenditure and average years of schooling, providing valuable insights for policy formulation aimed at poverty alleviation in Indonesia.References
Binariningrum, M. F., & Budiantara, I. N. (2014). Pemodelan regresi nonparametrik spline truncated dan aplikasinya pada angka kelahiran kasar di Surabaya. Jurnal SAINS dan Seni POMITS, 3(1), 7-12.
BPS. (2017). Indikator kesejahteraan rakyat Provinsi Jawa Tengah 2016. BPS Provinsi Jawa Tengah.
Badan Pusat Statistik. (2023). Profil kemiskinan di Indonesia: Maret 2023. Badan Pusat Statistik. Retrieved from https://www.bps.go.id
Hadijati, M., Komalasari, D., & Fitriyani, N. (2016). Statistical downscaling regresi nonparametrik kernel untuk prediksi curah hujan bulanan stasiun Sembalun. In Prosiding Seminar Nasional Matematika II (pp. 186-196). Bali: ResearchGate.
Hardinandar, F. (2019). Determinan kemiskinan (Studi kasus 29 kota/kabupaten di Provinsi Papua). Jurnal REP (Riset Ekonomi Pembangunan), 4(1), 1-12.
Okuputra, M. A., & Nasikh. (2022). Pengaruh inovasi daerah terhadap kemiskinan. Jurnal Ekonomi, Keuangan dan Manajemen, 18(1), 159-166.
Pembargi, J. A., Hadijati, M., & Fitriyani, N. (2023). Kernel nonparametric regression for forecasting local original income. Jurnal Varian, 6(2), 119-126.
Pratama, N. B., Purnomo, E. P., & Agustiyara. (2020). Sustainable Development Goals (SDGs) dan pengentasan kemiskinan di Daerah Istimewa Yogyakarta. Jurnal Ilmiah Ilmu Sosial dan Humaniora, 6(2), 64-74.
Wulandary, S., & Purnama, D. I. (2020). Perbandingan regresi nonparametik Kernel NWE dan B-Spline pada pemodelan rata-rata lama sekolah dan pengeluaran per kapita di Indonesia. JAMBURA Journal of Probability and Statistics, 1(2), 89-97.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Syahrul, Humami Syifa Amanda, Indi Rizqy Fahrani, Yasmin Yasmin, Nur Asmita Purnamasari, Zulhan Widya Baskara
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.