Pengklasifikasian 10 Kabupaten/Kota di Provinsi Nusa Tenggara Barat untuk Kasus Kemiskinan Tahun 2022 Menggunakan Analisis Cluster Metode K-Means
Keywords:
Poverty, Cluster Analysis, K-Means MethodAbstract
Poverty is a very serious problem for countries in the world, especially for developing countries like Indonesia. Poverty will have a big impact if it occurs in the long term with different factors. One province that is still in the spotlight for high levels of poverty is West Nusa Tenggara Province. Even though the number of poor people in West Nusa Tenggara Province has decreased, conditions of the ground show that there are still many people whose lives are far from decent. Therefore, the government must immediately find a solution to overcome the problem of poverty. To overcome cases of poverty in a region, we can group the characteristics of these regions based on poverty indicators into several clusters. Grouping in this case is carried out with data that will be analyzed using the K-Means cluster analysis method. So the results obtained by analysis using the K-Means cluster method for grouping 10 regencies/cities in West Nusa Tenggara Province based on poverty in 2022 formed 3 clusters, namely cluster 1 consisting of West Sumbawa Regency, Bima City and Mataram City, cluster 2 consisting of Bima Regency, Dompu Regency, West Lombok Regency, Central Lombok Regency, East Lombok Regency, and Sumbawa Regency, and cluster 3 consists of North Lombok Regency. Apart from that, the characteristics of each cluster were also obtained, namely cluster 1 containing the districts/cities with the highest PPM values. While RLS, AHH, and TPT have very high numbers in 2022, cluster 2 contains districts/cities that have quite low PPM, RLS, AHH, and TPT numbers in 2022, and cluster 3 contains a group of districts/cities with RLS, AHH, and TPT has quite low numbers compared to the high PPM in 2022.References
Afira, N., & Wijayanti, A. W. (2021). Analisis Cluster Kemiskinan Provinsi di Indonesia Tahun 2019 dengan Metode Partitioning dan Hierarki. Komputika: Jurnal Sistem Komputer, 10(2), 101-109.
Kusumah , R., Warsito, B., & Mukid, M. (2017). Perbandingan Metode K–Means Dan Self Organizing Map (Studi Kasus: Pengelompokan Kabupaten/Kota Di Jawa Tengah Berdasarkan Indikator Indeks Pembangunan Manusia 2015). Jurnal Gauusian, 429-437.
Mayangsari, Y. D. (2022). Analisis K-Means Pada Pengelompokan Kabupaten-Kota Provinsi Jawa Timur Berdasarkan Kasus Kesembuhan Dan Kasus Kematian Covid-19. Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim.
Ningrat , D., Maruddani, D., & Wuryandari, T. (2016). Analisis Cluster Dengan Algoritma K-Means dan Fuzzy C-Means Clustreing Untuk Pengelompokan Data Obligasi Korporasi. Jurnal Gaussian, 641-650.
Qori'atunnadyah, M. (2022). Pengelompokkan Wilayah Berdasarkan Rasio Guru-Murid Pada Jenjang Pendidikan Menggunakan Algoritma K-Means. Journal Of Informatics Development, 33-38.
Ramadhani , L., Purnamasari , I., Deny, F., & Amijaya , T. (2018). rapan Metode Complete Linkage Dan Metode Hierarchical Clustering Multiscale Bootstrap (Studi Kasus: Kemiskinan Di Kalimantan Timur Tahun 2016) . Jurnal Eksponensial, 1-10.
Riswan, & Khairudin. (2019). Statistik Multivariate. Bandar Lampung: AURA .
Santoso, S. (2014). Statistik Multivariat Edisi Revisi Konsep dan Aplikasi dengan SPSS. Jakarta: PT Elex Media Komputindo.
Sari, D. N., & Sukestiyarno, Y. (2021). Analisis Cluster dengan Metode K-Means pada Persebaran Kasus COVID-19 Berdasarkan Provinsi di Indonesia. PRISMA, Prosiding Seminar Nasional Matematika 4, 602-610.
Sutadji, D., & Prof. Dr. Purnomo. (2022). Analisis Data Multivariat. Banyumas: Omera Pustaka.
Talakua, M., Leleury, Z., & Talluta, A. (2017). Analisis Cluster Dengan Menggunakan Metode K-Means Untuk Pengelompokkan Kabupaten/Kota di Provinsi Maluku Berdasrkan Indikator Indeks Pembangunan Manusia Tahun 2014. Jurnal Ilmu Matematika dan Terapan, 119-128.
Triyanto, W. (2015). Algoritma K-Medoids untuk Penentuan Strategi Pemasaran Produk. Jurnal SIMETRIS , 183.
Yudiaatmaja, F. (2013). Analisis Regresi dengan Menggunakan Aplikasi Komputer Statistik. Jakarta: PT Gramedia Pustaka Utama.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Indonesian Journal of Applied Statistics and Data Science
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.